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Generalised constitutive equations for glassy systems 
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Republic of Germany and Max-Planck-Institut fur Physik und Astrophysik, D-8000 
Miinchen 40, Fohringer Ring 6, Federal Republic of Germany 

Received 11 July 1988, in final form 16 November 1988 

Abstract. For the model of a simple classical many-particle system generalised constitutive 
equations are derived which express fluctuations of arbitrary variables in terms of those for 
density, currents and temperature. In particular the microscopic expression for the dynamic 
specific heat is found. The generalised liydrodynamic equations for undercooled liquids and 
glasses are obtained as a special application of the theory. 

1. Introduction 

Recently heat spectroscopy was invented as a new technique to analyse structural 
relaxation in glassy materials (Birge and Nagel 1985, Birge 1986). The experimental 
results have been analysed with the aid of a temperature diffusion equation which was 
generalised phenomenologically by introduction of a complex specific heat cp( w )  = 
cL(w) + ici(w) depending on frequency w .  In this paper we want to derive the rep- 
resentation of cp(w) in terms of microscopic concepts. The calculations will be done for 
a model of a classical system of structureless particles. More generally, the proper 
microscopic formulation of generalised constitutive equations for arbitrary variables 
will be given. As a byproduct of the calculations generalised linear hydrodynamic 
equations will be obtained, which are valid for a description of long-wavelength fluc- 
tuations of density, currents and temperature in undercooled liquids and glasses. The 
latter were derived before by Bengtzelius and Sjogren (1986) on the basis of the kinetic 
equation approach towards hydrodynamics (Forster 1974, Mazenko 1974). The gen- 
eralised hydrodynamic equations imply the experimentally relevant constitutive 
equations which connect for example stresses and velocity gradients. In this way all but 
two coefficients can be identified. The exceptions are the dynamic specific heat c(w)  
and the heat conduction kernel A(o). The former connects energy with temperature 
fluctuations and the latter energy currents with temperature gradients. The relevant 
constitutive equations do not follow from the work of Bengtzelius and Sjogren (1986), 
since that work does not deal with energy or energy current fluctuations. 

Generalisations of linearised hydrodynamic equations for simple fluids have been 
derived rigorously by Kadanoff and Martin (1963). The essence of their approach is the 
generalisation of the three transport coefficients, shear viscosity q ,  bulk viscosity 5 and 
thermal conductivity A ,  to kernels depending on frequency w and wavevector q. Ignoring 
in their equations for reasons of simplicity the coupling between heat and density 
fluctuations and neglecting the q dependence of the kernels, one gets those equations 
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for viscoelastic motion which have long been used for the analysis of sound experiments 
in glassy materials (Litovitz and Davis 1965). The same procedure does not lead to the 
concept of a dynamic specific heat, however. This was one reason for Oxtoby (1986) to 
argue that the mentioned heat spectroscopy data should rather be interpreted solely in 
terms of a frequency-dependent thermal conductivity A(w). He supported his reasoning 
by solving a special model for energy relaxation. His results imply in particular that Birge 
(1986) was not quite correct in relating cp(w) to enthalpy fluctuations. On the other 
hand, Oxtoby's results are not definitive enough to decide whether his objections against 
the dynamic specific heat concept really refer to a controversy or merely to a question 
of semantics. Let us mention also that the generalised heat conduction equation has 
been combined recently with the viscoelastic equations (Jackle 1986); this work requires 
further phenomenological assumptions and contains various imprecise concepts like 
internal thermodynamic variables, thermometer temperature or frequency-dependent 
entropy. The following calculations clarify the indicated open questions. In particular 
the formulae provide a strict justification for Kramers-Kronig relations for all the 
introduced functions and for stability conditions like cF (w) /w 3 0. 

2. Preliminaries 

In this section the necessary notations and standard results will be listed. We want to 
consider a grand canonical ensemble of classical particles within a volume V ,  specified 
by temperature Tand chemical potential p .  Particle density, energy density and pressure 
are denoted respectively by n,  U and p .  The particle mass is abbreviated by m and the 
pair potential by u(r). The Hamiltonian determines the averages ( ) as well as the 
evolution of dynamic variables A,  B ,  . . . in time t. The set of dynamic variables is 
considered as a metric vector space with scalar product (A I B )  = (A*B)/k,T. The time 
evolution then is a unitary mapping generated by the Hermitian Liouvillian 2: A(t) = 
exp(i3t)A. The time-dependent X-Y correlator is introduced by QXu(t) = (X( t ) lY) .  It 
is more convenient to characterise the dynamics by Laplace transforms for complex 
frequency 2, defined by F(z)  = kiJ@(+t) exp(izt)F(t) dt ,  Im z 5 0. Off the real axis 
these functions are holomorphic, but across it they may be discontinuous: F(w k io) = 
F'(w)  +- iF"(w). The discontinuity F"(w) is called the spectrum and it determines F'(w)  
by a Kramers-Kronig relation. The correlator QxU(z)  is given as a Liouvillian resolvent 
matrix element, equation (A13). 

The distinguished variables to be used are the fluctuations for wavevector q of density 
p(q), current densityj,(q), CY = x ,  y ,  z ,  and temperature T(q) .  They can be written as 

where y1 labels the particles. Particle position and velocity will be denoted by r", U". 
For the mentioned cases one gets respectively: x; = 1, x; = U ; ,  x$ = [m(v")' - 
3kBT]/3kBn. For a classical system the temperature is given as (m(u")2)/3kB. In order 
to calculate the fluctuations T(q) one has to subtract that part due to density fluctuations. 
All variables can be measured mechanically. As instrument one can imagine in principle 
the analysis of a nuclear transition line. Intensity, linear and quadratic Doppler shift 
determine respectivzly density, velocity and temperature. Obviously, T(q) = 
Q,EK(q) (2/3kBn). Here EK(q)  denotes the kinetic energy fluctuations and is given by 
equation (1) with x" = 1/2m(u">'. Qp = 1 - P, with P, = Ip(q))(p(q)ip(q))-'(p(q)( 
denotes the projector perpendicular to density fluctuations of wavevector q. To simplify 
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thenotations wewilloftendropthemomentumvariab1eandwritee.g. P p  = lp) (plp)-'(pl 
instead of the full expression. The specified five variables are pairwise orthogonal and 
the normalisations are given by: 

( d q )  b(q)) = Ns(q)/ TkB (2a) 

(j&)ljp(q)) = Nd,/m (2b) 

("I) = N72/(3n2k*). (2c> 

Here Nis the particle number and S(q) denotes the structure factor; /q1 = q. We will also 
need the total energy fluctuations, which are the sum of kinetic and potential parts: 
E(q)  = EK(q) + Ep(q) .  The latter reads explicitly: 

The heat fluctuations E ( q )  are that part of the energy fluctuations which are not produced 
by density fluctuations: 

4 4 )  = QpE(q)* (4) 
There are the fundamental conservation laws for particle number, momentum and 
energy: 

%44) = q g j p ( 4 )  (5a) 

%+,(q) = 4p%p(q)/m (5b )  

%E(q) = qpj;(q). (5c) 
Splitting the energy into kinetic and potential ones, equations (5a, c) yield the time 
derivative of the temperature fluctuations: 

gT(q )  = [4&(4) - qpjp(4) (P(4)1E(q>)/(P(q)lP(q)) - %2pEP(q) l  (2/3k~n).  ( 5 4  

The energy current j e  can be written as equation (1). There are three contributions to 
x": one depends on U" only; one is given by potential terms and depends on the positions 
only; and a thirdone depends onvelocitiesandpositions. Thestress tensor zissymmetric. 
There are two contributions to equation (1): a kinetic part with X" = mvEv; and a 
potential part depending on the positions only. One splits z into irreducible tensors: 

Thevirial theorem identifiesp(q) aspressurefluctuations. The kinetic part of the pressure 
fluctuations is given by the kinetic energy, pK = EK2/3, and the potential part reads: 

p p ( q ) = i  u'(r,  -rm)lra -rm1{1 -exp[iq.(r, -r,)l)[iq.(r, -r ,)~-~exp(iq.r ,) .  
n # m  

(7) 
A!l the variables introduced like p ( q ) ,  p(q) or j :(q), j,(q) are Fourier transforms of 
Hermitian densities with time inversion parity +1 or - 1 respectively. We will use these 
in the following without mentioning that the scalar products of two such variables with 
different parity, like (p (q ) l jJq ) ) ,  vanish. 

Suppose that the equilibrium ensemble is altered by enforcing potential fluctuations 
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Sp(q),  velocity fluctuations u,(q) and temperature fluctuations ST(q).  Then the 
expectation value of X* is changed in linear approximation by ( ax*)  = [(Xlp)bp* + 
(Xlj,)m/nu; + (XlE)6T*/T]/V.  Applying this to X = p and eliminating 6p* in terms 
of ( 6 p * )  one gets for the thermodynamic variation of the Xdensity: 

( w q ) * ) t h  = X F ( q ) ( M q ) * )  + Xt,"(4)u,(q)* + Xt,"WT(q)*.  

xF (4) = (X(!?)/p(q))kBT/NS(q) (9a) 

x'," (4) = (X(q)lj,(q)m/N (96) 

Xt,"(q) = (X(q) /4q) /W.  (9c) 

(8) 
Here the thermodynamic coefficients for density, velocity and temperature are given 
by: 

Let us note those special cases which will be needed later. The density coefficient of the 
pressure can be reformulated with equations (26), (sa, 6) and (6): 

~ , ~ P ( ~ ~ P I P ) / ~ ~  = (PIP) = qa(%ejruI~)m/q2 = ( j , l i p ) v e q p / q 2  = N .  

pF(q) = kBT/S(q) = L K  + o((qrO)2)l/n. 

Hence 

(loa) 

In liquids and glasses one can assume absence of long-range order, i.e. spatial 
correlations like (p ( r )p ( r ' ) )  decay on the scale given by the inter-particle distance 
ro In this paper only fluctuations of macroscopic wavelength 2n/q are con- 
sidered. Therefore Fourier transforms of correlations like S ( q )  can be replaced by their 
homogeneous limit like S(q + 0). The corrections are of order qro, unless symmetry 
requires even higher orders of this small parameter. Such correction will be ignored here 
and throughout the following. In equation (9a) the q = 0 limit is given by the isothermal 
bulk modulus: K = - [ V a p / a v T .  Similarly one can write for the temperature coefficient 

p'Th(q) = P + W P d 2 )  (106) 

where p = [ a p / d  TI, is the tension coefficient. In the same fashion one obtains for the 
energy derivations: 

EF(q)  = [au/anI + WmJ2)  
Efrh(q) = c + O((qro)*). 

(10c) 

(104 

Here c denotes the isochore heat capacity per unit volume. To evaluate the velocity 
coefficients of the energy current one can reformulate with equations (56, c )  and (6): 

" p ( j ; l j , ) l q 2  = m q , ( W L ) / q 2  = (El%?)4cu4p/42 = (ElP) = (EIP) 

+ (Eld (PIP)-". 
One can either substitute the explicit expression for j e  and work out the left-hand side 
with the aid of the virial theorem, or one discusses the right-hand side with the aid of 
equations (sa, 6, c). As a result one finds: 

( j ; ) ' , " (d = 6,P + O((qr0)2)1 (loel 

where h = ( U  + p)/n is the enthalpy per particle. Further details can be found in the 
books by Boon and Yip (1980) or Hansen and McDonald (1986). 
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3. Generalised constitutive equations 

Equations (8)-(10) are relevant for the interpretation of experiments only if the system 
relaxes from the perturbed equilibrium state to the equilibrium with a timescale z which 
is much shorter than the timescale z,, characterising the imposed variations of 6 p ,  U and 
6T. In glassy materials z can be of macroscopic size. Therefore the mentioned results 
have to be generalised such that no assumption on the magnitude of z/z,, is required. 
This will be done by studying the free relaxation of the system starting with well defined 
initial conditions. Let us begin by considering r distinguishable independent variables 
Ai, i = 1,.  . , , Y. The initial state will be an equilibrium one specified by the altered 
Hamiltonian H-Y .  Here Y is defined in terms of r conjugate fields & j :  Y = Ajaj. The 
notations are explained in connection with equation (A8). In linear approximation with 
respect to the fields the deviation from equilibrium of some variable X* at time t = 0 
is given by ( 6 X * ) ( t  = 0) = ( X I Y )  = (XIAj)aj .  In particular one finds for the initial 
conditions of the distinguishable variables 

( 6 A T ) ( t  = 0 )  = ai. (11a) 
The free motion of variable X *  for t 5 0 for small ai is given by the X-Y correlator 
(6X*) ( t )  = QXr(t) .  However, we will describe the dynamics by Laplace transforms 
(ax*) ( z )  as explained at the beginning of 8 2: (ax*) ( z )  = QXu(z) .  In particular the r X Y 

matrix correlator Qv(z) = @AiA, (2) then expresses the distinguished variables in terms 
of their initial values: 

( 6 A T ) ( z )  = Q.,(z)aj. (1lb) 
The preceding formulae are the well known basis of the theory of correlation functions 
(Kubo 1957, Forster 1975). To obtain a formula for the general quantity ( 6 X * ) ( z )  we 
shall reformulate the X-Y correlator with the aid of equation (A14). This expression 
simplifies, since Q Y  = 0 implies R' ( z )Y  = 0. Eliminating (AjlY) = d with equation 
(l lb) one gets 

( 6 X * ) ( z )  = X ' ( z ) ( 6 A T ) ( z )  (12a) 
X ' ( Z )  = (XIA ' )  - (XIR ' ( z ) (LA ' ) .  (12b) 

As a result the quantity (ax*) ( z )  is expressed in terms of (6AT ) ( z ) .  These quantities 
are measurable in principle and they are determined by the Liouvillian resolvent, 
equations (A10) and (A13). The coefficients X' ( z )  connecting the arbitrary variable with 
the set of r distinguished ones are composed of the thermodynamic derivative (XIA')  
and of a frequency-dependent renormalisation. The latter is determined by the reduced 
resolvent, equation (Al l ) .  The mathematical properties of the coefficients X'(z )  follow 
from those of resolvent matrix elements. X' ( z )  is holomorphic for Im z # 0, and this 
ensures causality of the X-Ai relation. Writing X i ( o  k io) = X"(w)  k X'"(w),  the 
reactive part X " ( w )  - (XIA ' )  is connected with the dissipative one X'"(w) via 
Kramers-Kronig relations. There is the large frequency asymptotics X i ( z )  = (XIAi )  + 
(XiQILA') /z  + O(1/z2), and so on. 

Formulae (12) will be specialised now by choosing as distinguished variables the five 
hydrodynamic fluctuations for density, current and temperature: 

To get the expressions for the coefficients one has to remember that gi#j  = 0 and use the 
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diagonai metric coefficients from equations (2). Since QZ,p = Qq . j  = 0, there is no 
renormalisation of the density coefficient: 

x, ( 4 , z )  = Xkh (4). 

X , ( q ,  z> = X 3 4 )  - qir(X(q)lR’(z)/z,/,(q))/N. 

04a)  

(14b) 

(14c) 

The renormalisation of the velocity coefficients can be reformulated with equation (5b): 

For the energy coefficient one finds from equation ( 5 d ) :  

X T ( 4 , Z )  = -G%) + [z(x(q>lR’(z>I~p(q>) - 4p(X(q) /R’(z ) / j~(q) ) l /VT.  

Here QpE = QE,  Q j  = 0 and the equation of motion for the reduced resolvent, equation 
(All) ,  was used: 

R’(z)L’ = L’R’(z) = Q + zR’(z). (15) 
Equation (13) is the desired generalised linear constitutive equation; it replaces equation 
(8) for motion on an arbitrary timescale. Equations (14) are the corresponding gen- 
eralisations for the coefficients, replacing equations (9). 

The next task is the discussion of the long-wavelength limit of the various coefficients 
like e.g. of F(q ,  z )  = (&(q)(R’(z ) /p(q) ) .  If F(q, z )  were defined with the complete resolv- 
ent R(z )  instead of with the reduced one R’(z) ,  a meaningful small-q expansion could 
not be performed. The conservation laws, equations ( 5 ) ,  show that L exhibits eigenstates 
for wavevector q whose eigenvalues vanish for q -+ 0. As a result F(q,  z )  is singular in 
the hydrodynamiclimit. Operator L‘,  equation (All) ,  doesnot have these eigenvectors; 
projector Q eliminates p(q), j,(q) and a vector T(q)  which has a large component 
parallel to E(q) .  Thus the typical hydrodynamic singularities are eliminated in reduced 
Liouvillian matrix elements like F(q ,  2) (Forster 1975). However, it is not possible to 
write in analogy to equation ( l o a )  F(q ,  z )  = F(q = 0 ,  z )  + O(qY) with y = 2. Product 
modes composed of pairs of hydrodynamic excitations like &(q - k)ja(k) lead to non- 
analytic small-q behaviour implying e.g. y = 1. These are the well known long-time 
singularities (Pomeau and Resibois 1975). We shall not enter a deeper discussion of this 
problem. Rather we will assume without detailed proof that y > 0, so that a long- 
wavelength expansion of quantities like F(q ,  z )  is possible. Only the leading terms will 
be noted in the following and the O(qY) will not be indicated. As a result we shall find 
constitutive equations which share with the hydrodynamic ones the restriction to the 
small q limit, but which generalise the classical theory in the sense that no restrictions on 
the frequency is imposed. Notice also that only linearised constitutive or hydrodynamic 
equations are considered in this paper, so that the general linear response formalism 
could be applied. If one wanted to extend the theory to non-linear cases one would need 
additional assumptions like e.g. the one on a local thermal equilibrium. Let us consider 
various cases one after the other. 

4. Generalised hydrodynamic constitutive equations 

4.1. Dynamic specific heat and heat relaxation kernel 

The constitutive equation for long-wavelength energy fluctuations is obtained by 
substituting X(q)  = E(q)  in equations (13) and (14): 

(SE(q)*) (z )  = ( a u / a n > ( ~ p ( q ) * > ( z )  + c ( z )@T(q)* ) ( z )  (16a) 
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c(z) = c + ~(EP(4)1R'(Z)lE'(4>)/Tv q +  0. (16b) 

Here equations (lOc, d )  were used to express the thermodynamic derivatives in 
equations (14a, c).  Because QE(q)  = QEp(q)  the total energy could be replaced by 
the potential contribution in equation (16b). Equation (16a) identifies c(z) as the 
isochore dynamic specific heat. If the potential energy fluctuations are ergodic vari- 
ables, the reduced resolvent matrix element in equation (16c) does not exhibit a 
( l / z )  singularity. In this case the static limit of the dynamic specific heat reduces to 
the corresponding thermodynamic derivative: c(z + 0) = c. In addition to the general 
analytic properties of c(z) one finds that c"(u)/w is an even non-negative function of 
frequency. 

The other quantity relevant for the interpretation of energy transport experiments 
is the energy current density. Because of rotational invariance the quantities 
(j;lR'(z)ltais) and F(q)  = (j",Z?'(z)lEp)/VT vanish for q = 0. Using equation ( loe)  
one finds 

The general properties of resolvent matrix elements imply A"(w) to be an even non- 
negative function of frequency. Restricting frequencies to such small values that A(z)  
can be treated as constant, equation (17a) reduces to the standard hydrodynamic 
constitutive equation with 

A = A"(w = 0) = -iA(z = io) (17c) 
denoting the thermal conductivity. So A(z) replaces iA by a generalised kernel. Let us 
point out that equation (17a) does not provide a systematic expansion correct in linear 
order in q. Because of rotational invariance one gets F(q) = O(qr,), and so the 
neglected first renormalisation term in equation (14c) yields a correction i ( z )  - F(q)/ 
q to A(z).  This term describes the transfer of energy over microscopic distances due 
to the non-zero potential range. This term is neglected, since qro is so small for the 
wavevector range under study. 

4.2. Dynamic tension coeflcient and volume relaxation kernel 

To derive the constitutive equation for the pressure one has to substitute X(q)  = p ( q )  
into equations (13) and (14).  The density coefficient p p ( q +  0, z )  is given by the bulk 
modulus K via equations (14a) and (lob). Because of rotational symmetry the leading 
small-q contribution to the poc(q, z )  renormalisation in equation (14b) is due to the 
scalar part of the stress tensor, equations (6) .  The thermodynamic derivative in 
equation (14c) is given by the tension coefficient /3 from equation (lob),  and only the 
first renormalisation term contributes in the q +  0 limit. Since Qp(q)  = Qp'(q) one 
finds the results: 

(@(q)*)  (2) = ~(M?)*)  (2) - ( l /n )Kv(z )  (4 "*) (2) + P(z> @T(q)* )  (2) (18a) 

Kv(z) = (Pp(q>lR'(z> IPP(4)) lv 4 + 0  (18b) 

P(z> = P + z(pP(4)1R'(z>lEP(q))/Tv q +  0. (18c) 

If there are no density fluctuations, (6p) = (66) = 0, coefficient P(z) is the coefficient 
of proportionality between pressure and temperature fluctuations. It generalises the 
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thermodynamic tension coefficient p to a dynamic quantity. If E’ or p’ are ergodic so 
that (pPIR’(z)IEP) does not have a (l/z) pole, the dynamic coefficient reduces to the 
thermodynamic one in the static limit p(z+ 0) = p. Coefficient K,(z) determines 
pressure changes due to volume variation velocities. The usual considerations show 
that KI: ( U )  is an even non-negative function of U .  Since p p ( q )  and Ep(q)  are Fourier 
transforms of Hermitian variables of equal time inversion symmetry p”( u)/u is an 
even real function of o. The role of E and p can be interchanged in the definitions of 
P and P(z). 

4.3. Shear relaxation kernel 

If X ( q )  = z i S ( q )  is substituted one finds that XJq ,  z )  and X T ( q ,  z )  vanish like (roq)2 
in the long-wavelength limit because of rotational symmetry. For the same reason the 
scalar part of zmp(q) contributes in equation (14b) only terms of type qpU((roq)2). As 
a result the constitutive equation (13) reads in leading order 

( 8 q d Z )  = -(.~alR’(z)l.”,p)(4pja - amp4’j/3). 

The coefficients of the fourth-rank tensor can all be expressed in terms of one. As a 
result one gets 

( C p ( 4 ) * ) ( 4  = - ( 1 / n ) K s ( 4  [4,( j ,(4)*>(4 + 4p( jm(q)*>(z) - &Y/3(4 *j(q)*)(z)l 
(19a) 

W )  = (tx,(4>lRr(z>I.xZ(s>)/V 4 = ( O , O ,  4 )  q - )  0. (19b) 

Again & ( U )  is an even non-negative function of frequency U .  If the shear is ergodic, 
the constitutive equation (19a) reduces to the Navier-Stokes equation result with 

q = Kl(u = 0) = -iK,(z = io) (20) 
denoting the shear viscosity. So K ( z )  generalises iq to a frequency-dependent kernel. 

5.  Generalised hydrodynamic equations 

Some experiments can be analysed with the formulated constitutive equations. For 
example in an ordinary calorimetric measurement a homogeneous energy variation 
(bE(q  = O)*)(z )  is enforced by light absorption and the temperature change (aT(q  = 
O)*)(z) is observed by some thermometer coupling to the particles’ kinetic energy. 
Essentially, the result of the experiment is connected to the theory via c(z )  in equations 
(16).  However, in other experiments the system is disturbed by manipulations of 
boundary conditions. This is the case for the quoted heat spectroscopy (Birge and 
Nagel 1985) as well as for sound reflection measurements (Litovitz and Davis 1965). 
To deal with these situations one has to know the equations of motion for the 
distinguished variables. Again the standard hydrodynamic equations have to be gen- 
eralised such that no ad hoc restrictions for the frequencies are imposed. Within 
our approach the desired results are obtained from special constitutive equations. 
Let us first remember the elementary identity for Laplace transforms: z(A:)(z) + 
(A,*)(t =0) = ((-A)”) (2). Since -iA, = LA, one gets the equation of motion 
z(A: ) (2) - ((LA,)*) (2) = -(A,* ) ( t  = 0). Now one can use the r constitutive equations 
(12a) for X =  LA,, j = 1 , .  . . , r: 

((LA,)*)(z) = Ni(z)(aA%)(z).  (21a) 
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The equations of motion then read 

[zGf - N f ( z ) ] ( d A : ) ( ~ )  = -(GAJ”)(t= 0). 

[ z s ;  - Nf(z)]Q.r(z) = -ay .  

(21b) 
With equations (11) one finds the equation for the matrix correlator of the distinguished 
variables, equation (AlO), 

(21c) 
The preceding three equations are pairwise equivalent. From equation (12b) one 
notices Nf(z) = (LA, /AL)  - (LA,/R’(z)lLA’) and so the results correspond to one of 
the Frobenius formulae, equation (A3) or (A12). The equations (21) are the Zwanzig- 
Mori equations which express time derivatives or correlators in terms of memory 
kernels (Forster 1975). 

Because of rotational invariance the current correlator can be represented in terms 
of two independent functions: 

Qa&, z> = ( ~ a ( q ) l f w j & d )  = (4a4p/42)Ql(4, 2 )  + [Gap - (4aqp/42>1@t(4, 2). 

Here Ql(q, 2) is the correlator of the longitudinal currents, Ql(q, z )  = (jl(q)lR(z)ljl(q)), 
where j,(q) = j ( q )  q/q. Choosing q = (0, 0, q)  the transverse current correlator is 
given by Qt(q, z )  = Qxx(q, 2) = Qyy(q, z ) .  There is no mixing between transverse 
currents and any of the other hydrodynamic modes, and so the corresponding 
expression (21c) reduces to a scalar equation. From equations (5b), (6a), (18a) and 
(19a) one finds the specialisation of equation (21a): 

( ( L j x ( q ) ) * ) ( z )  m = d%(q)* ) (z )  = -K&)q2( jx (q ) * ) (Z ) .  

As a result the transverse correlator is determined by the shear relaxation kernel. It 
has the form of a generalised diffusion propagator: 

[ z  + q2Ks(z) /41Qt(4,  2) = -N/m. (22) 
The three longitudinal vectors A,(q) = p ( q ) ,  Az(q) = j ,(q), A,(q) = T(q) are 

coupled and equation (21c) is a 3 x 3 matrix identity. The task is the determination 
of N; from the three constitutive equations (21a). The first of them is trivial, since the 
continuity equation (5a) yields 

( ( L p ( q ) ) * ) ( z )  = 4(j1(4)*)(z). (23) 

The second one is obtained by combining the constitutive equations (Ma) and (19a) 
with the momentum conservation law Lj,m/q = z,, = z:, + p ,  equations (5b) and (6): 

Here the longitudinal relaxation kernel was introduced: 

K,(z)  = K&) + t K s ( z ) .  
To derive the remaining third constitutive relation from equation (5d) one uses result 
(17a) for the energy current and the discussion preceding equation (10e) in order to 
write (plE)/(plp) = h - ( & / p ) / N .  Hence with definition (lob) for f i  one obtains 

( j ? (q ) *> (z )  - 0’1(q)*)(z) (PlE)/(PlP) = ( ~ P / n ) M q ) * ) ( z )  - 4A(z)(GT(q)*)(z) .  
(25a) 
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To deal with the last term in equation ( 5 4  one has to work out the constitutive 
equation for X = LQ,EP = LQE’. Variable X has odd time inversion symmetry and 
this implies in particular X J z )  = 0 in equation (14a). Because of equation (15) one 
can write ( X ( R ’ ( z ) ( A )  = (E’lQlA) + z(E‘/R’(z)IA). Hence one derives for equation 
(146): 

NX,  = (Q,E’ILI’,)m - q[(E’IQ,l~,,> + ~ ( ~ p ~ ~ ’ ( ~ ) ~ ~ z z ~ l  = - q ~ ( E p I R ’ ( z > l ~ z z ) .  
In leading order in q only the scalar part of the stress tensor contributes because of 
rotational symmetry. From equations (6) one finds X, = -qz(EPIR’(z)lpP)/N. 
Equation (14c) yields in leading order for small q: 

X, = [z(EplQ,lEp) + z2(EP~Rr(z ) /EP)] /VT.  

Remembering equation (16b) one summarises the formulae to 

( (LQpEp(q))  *> (2) = -qz(Ep(q)IR’(z>IPp(q>) (I’dq)*) (2) 

+ z[c(z) - 3kBn/2] (aT(q)*)  (2). (25b) 
Combining the preceding two equations with equation (18c) one arrives at the desired 
result: 

( (LT(q ) )  *> (2) = [2Tp(z>/3kBn21q0’1(q)*) (2) + z(aT(q)*) ( z )  

- [zc(z> + q2A(2)1 [2/ (3kBn) l  (6T(q)*> (z>* (26) 
Results (23), (24) and (26) are one way to note the closed set of equations of motion 
for long-wavelength longitudinal fluctuations. Notice that all the four coefficients 
Kl(z) ,  A(z) ,  p(z) and c(z )  in these equations have been analysed in 0 4. According to 
equation (21a) one can read off matrix Nf(z) and note the result in the form of the 
negative inverse correlator -@.H(z), equation (21~):  

(27) 
1 Z -4 0 

-qK/m z + q2K,(z)/nm -sP(z>/m 
0 -qp(z) (2T/3kBn2) [zc(z) + A(Z)q2] (2/3kBn) a i [ z d f  - N;(z)]:  

This formula generalises to arbitrary frequencies the known hydrodynamic matrix 
(Hansen and McDonald 1986). 

For the discussion of boundary-value problems it is more useful to transform from 
fluctuations to densities as function of position r and write the result in the form of 
equation (21b). According to equation (1) the Fourier transform is used with con- 
vention X(q)  = Jd 3r exp(iq * r)X(r) .  To simplify the notation let us write (X(r ) )  ( z )  = 
X(r ,  z ) ,  (X(r ) ) ( t  = 0) = Xo(r).  Then the continuity equation (23) reads 

-i[zp(r, z )  + pO(r ) ]  + divj(r, z )  = 0. (28) 
The momentum conservation law is obtained by combining equations (22) and (24): 

-i[zj(r, z )  +jo(r)]m + Kgradp(r ,  z )  + p(z)  grad T(r,  z )  
= -iKs(z)Aj(r, z ) /n  - i[K,(z) + &K,(z)] grad divj(r, z)/n. (29) 

(30) 

The equation for temperature variations follows from equation (26): 

-i[zc(z)T(r, z) + jkBnT,(r)] + iA(z)AT(r, 2) = -p(z)  divj(r, Z)/n. 
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The results are identical to those one would obtain by Laplace transformation of 
the ordinary hydrodynamic equations of simple classical fluids. This holds with the 
reservation that in place of the transport coefficients q ,  <, A there appear the kernels 
-iKs(z), -iKv(z), -iA(z), and instead of the thermodynamic derivatives there occur 
the corresponding dynamic generalisations B(z) and ~ ( z ) .  As a result one can take 
over all the known results of the classical theory as for example the transformation to 
isobaric conditions or the formulae for sound reflectivity coefficients; one merely has 
to replace the material constants by the corresponding complex functions of frequency. 
The situation is quite analogous to electrodynamics of simple media; there one gets 
the relevant equations for long-wavelength fields from the phenomenological ones by 
replacing the dielectric constant by a frequency-dependent function. Notice that the 
preceding equations describe the dynamics for t > 0 as follows from the specified very 
special prehistory f o r t <  0: (6A:)(t) = exp(etai) ,  E +  +0 (Kubo 1957). Formulae for 
the more general case of an arbitrary prehistory can be derived from the obtained 
dynamic susceptibilities, and they are more involved (Jackle and Frisch 1986). 

6. Conclusions 

The preceding analysis focused on the fluctuations of the temperature T rather than 
on those of the energy E. It might be worth while to explain why in glassy systems 
this procedure is to be preferred compared to a direct generalisation of the standard 
approach towards hydrodynamics. For the sake of simplicity let us ignore the coupling 
between temperature and density fluctuations. Let us remember the experimental fact 
that slow structural relaxation is the most outstanding feature of glassy dynamics. This 
means that many spectra like the one for density fluctuations Q"(q, o) or for the 
specific heat c " (o ) /w  exhibit a low-frequency resonance whose width l/t decreases 
strongly with decreasing temperature. Below the calorimetric glass transition tem- 
perature the corresponding relaxation time z becomes macroscopic. Let us simplify 
the reasoning by considering an idealised glass state where l / z  = 0. Then the structural 
relaxation resonance is idealised by an elastic peak: Q"(q, o) = n 6 ( o ) A ( q )  or c"(w)/w 
= n6(w)A ,  for o = 0. The corresponding fluctuations do not relax to zero, they 
arrest spontaneously; the variables exhibit non-ergodic dynamics for this idealised 
situation (Kubo 1957). Equivalently, the correlators develop a non-ergodicity pole: 
Q : ( q ,  z )  = -A(q ) / z  + regular terms. The appearance of such poles is equivalent to 
the existence of similar poles in proper defined relaxation kernels. For the density 
fluctuations this is the longitudinal current relaxation kernel (Gotze 1981) , which 
reduces to K,(z)  in the long-wavelength limit. Similarly, the possibility for the idealised 
glass to sustain static shear, i.e. the validity of Hooke's law for the static stress-strain 
relation for shear, is equivalent to the existence of a non-ergodicity pole for the 
transverse current relaxation kernel, which reduces to Ks(z)  for small wavevectors 
(Bengtzelius and Sjogren 1986). It is also an experimental fact that heat conduction 
of high-temperature glasses is not drastically different from that of the corresponding 
crystals or from that of the liquid state at some elevated temperature. Indeed, there 
is no obvious reason why structural arrest in a densely packed system should have a 
strong effect on the exchange of kinetic energy between the vibrating atoms. Hence 
long-wavelength temperature fluctuations will propagate as described by an ordinary 
diffusion equation. This is equivalent to kernel A(z)  in equation (30) being a smooth 
function of frequency. So within our formalism normal variables like A(z)  are well 
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separated from those exhibiting structural relaxation resonances like K,(z) or c(z ) ;  
and the latter are related most transparently to the resonances of the correlators. On 
the other hand, the correlator for the heat fluctuations Qe(q, z )  = (E(q)/R(z)(E(q)) ,  
which is a basic quantity within the usual hydrodynamic theory (Forster 1975), does 
not have a simple form for glassy systems. In the idealised glass state it exhibits a non- 
ergodicity pole, since arrest of density fluctuations implies that for potential energy 
fluctuations. In addition it has to exhibit a diffusion pole as a result of the temperature 
propagation process. Hence for small frequencies and wavevectors one finds Qe(q, z )  = 
-(A&) - a / (z  4- iAq2). If one forces this result into one relaxation kernel .(q, z ) ,  
Qe(q, z )  CC -l/[z + K ( q ,  z )q2] (Kadanoff and Martin 1963), the latter becomes a 
complicated singular function of q. It is impossible to describe simultaneously structural 
arrest and diffusion by a simple expression for a single kernel ~ ( q ,  z ) .  The proper way 
to find formulae for quantities like Qe(q, z )  is the derivation of a constitutive equation 
and then the substitution of the simple results for the correlators of p , j ,  T. More 
explicitly, substitution of X = Y = ~ ( q )  into equation (A14) expresses Qe(q, 2) as a 
linear combination of the hydrodynamic correlators Qi,(q, z )  with coefficients evalu- 
ated in 0 4. 

More theoretical support for our approach comes from the recently developed 
microscopic theory for undercooled liquids and glasses (Bengtzelius et a1 1984, Gotze 
and Sjogren 1987b). Within that theory density fluctuations p(q) and density pair 
excitations p(q - k)p (k )  are the essential variables. They exhibit slowing down of the 
motion for all wavevectors q and k ,  in particular for wavevectors representing short- 
range correlations q - k - l/ro, because of non-linear interaction effects. As a result 
all such variables exhibit structural relaxation peaks, or non-ergodicity poles if the 
idealised glass is considered, which have an overlap with the mentioned modes. For 
the generalised hydrodynamic equations this is the case for the variables entering c(z ) ,  
P(z),  Ks(z)  and K,(z). The derived microscopic formulae are a most convenient 
starting point for their approximate evaluation within the microscopic theory. On the 
basis of that theory one can conclude without any further detailed work that the 
spectra of the mentioned quantities exhibit the well known stretching phenomenon, 
and that the strongly temperature-dependent scale t is universal for all the variables 
(Gotze 1987, Gotze and Sjogren 1987a). The mode-coupling contributions to A ( z )  in 
equation (17b) are proportional to squares of the decay amplitudes (je(q)IA), where 
A are products of density fluctuations. Since A and j e  have different time inversion 
symmetries, the amplitudes vanish. Therefore A(z) does not exhibit a structural 
relaxation peak. The heat fluctuations E ( q )  have one part which is a superposition of 
pair modes. Every term in this superposition becomes slow in glassy systems. The 
other part, the temperature fluctuations, is perpendicular to the single and multiple 
density modes. It becomes slow only for small wavevectors because of the energy 
conservation law. The constitutive equations automatically separate the two quite 
different contributions mentioned. So the essential point of this paper is the proper 
separation of those modes which become almost non-ergodic only in glassy systems, 
from those which become slow for small wavevectors in all systems because of 
conservation laws. 
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Appendix 

A general expression for resolvent matrix elements in terms of the reduced resolvent 
will be derived. The desired result is a reformulation of well known Frobenius' 
formulae (Gantmacher 1986) for the inversion of a block matrix: 

K = A  - BD-lC.  (A31 
Here A ,  B ,  C and D are matrices of type r X r ,  r X s, s x r and s x s respectively. To 
write equation (A2) in a more condensed form let us define the following four block 
matrices: 

Then equation (A3) can be written in the equivale:+ fashion: 

P(M - MD'M)PK'P = P. 

Furthermore 

M-' = D' - ( P  - D'M)K'(MD' - P).  (A71 
Let us consider the block matrices as linear mappings in an ( r  + s)-dimensional 

unitary vector space. Let A,, i = 1 , .  . . , r ,  be a basis of the subspace onto which 
operator P projects. The r X r metric matrix will be denoted by g ,  and the usual 
conventions like g"gb = 8'1, A' = g"A, will be applied. One gets: 

(A,  IA,) = g ,  P = /A ' ) (A,  1 Q = 1 - P. (A81 
For complex z let M = L - z for some operator L.  Then R ( z )  = M-' is the resolvent 
of L: 

R( z )  = ( L  - 2)-1. (A91 
Block matrix K' is given by the r2 matrix elements of the resolvent formed with the 
specified basis : 

@&> = (ALIR(Z)IA,). ( A W  

Equation (A6) expresses this matrix in terms of the reduced resolvent D' = R ' ( z ) ,  
where 

R'(z )  = Q(L'  - z ) Q  L' = QLQ.  (Al l )  

[z8f - (A,IL/A') + (A , ILR' (z )L~A' )]@. ' l ( z )  = - a{. (A12) 

Since Q P  = 0, one gets Q M P  = Q L P ,  PMQ = PLQ and therefore 
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To express the general resolvent matrix element 

@ X Y ( Z )  = ( X / R ( z ) /  Y )  

in terms of the reduced resolvent one evaluates (XIM-']  Y )  from equation (A7): 

@ x y ( z )  = (XIR ' (z ) lY)  - [ (XIA ' )  - (XIR'(t)LIA')]@U[(AiJLR'(z)/Y) - (A'IY)]. 

6414) 
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